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A comprehensive study is made of the energy relaxation rates between ions and electrons in a dense
hydrogen plasma. Results of classical molecular dynamics �MD� simulations are compared with quantal cal-
culations using the Fermi golden rule and using dimensional continuation. The rates from the molecular
dynamics simulations employing a screened potential are found to be in reasonable agreement with the
Landau-Spitzer relaxation rates, and are around 30% higher than the Fermi golden rule rates. By inverting the
classical MD relaxation rate vs the quantal result, a semiclassical value for the screening length is suggested.
We present energy relaxation rates relevant for radiation-hydrodynamic simulations of inertial confinement
fusion devices.
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I. INTRODUCTION

The rate at which energy is transferred between electrons
and ions is a quantity of fundamental importance in nonequi-
librium plasmas. In particular, radiation-hydrodynamic simu-
lations of dense plasmas, such as those found in inertial-
confinement-fusion �ICF� devices, require accurate energy
transfer rates in order to model properly the energy and mo-
mentum transfer in the system. The theoretical study of such
energy relaxation rates has a long history, beginning with the
pioneering work of Landau and Spitzer �1–3�, who consid-
ered weakly coupled plasmas under classical conditions.
Generalizations of this approach for lower temperature plas-
mas were made by Brysk �4�, and further improved by Lee
and More �5�. More recently, Dharma-wardana and Perrot
�6,7� derived a relaxation rate by drawing an analogy with
the work of Kogan �8�, who applied the Fermi golden rule to
metals and semiconductors. Consideration of the coupled-
mode behavior of the plasma has permitted further exten-
sions �7�. An intuitive derivation of the Kogan approach as
applied to weakly coupled electron-ion systems was also
given by Hazak et al. �9�, who introduced a modification of
the Kogan expression that reduces to the Landau-Spitzer re-
sult in the high temperature region. Various quantum-kinetic
approaches have been proposed to describe the energy relax-
ation for strongly coupled systems �10,11�, which may avoid
the requirement of cutoff parameters in the Coulomb loga-
rithm. Recently, the application of dimensional continuation
has yielded an analytic expression for the electron-ion relax-
ation rate �12,13� of a fully ionized weakly coupled plasma.
Further, an analytic expression of the energy relaxation rate
for nonequilibrium systems has recently been presented �14�.

Experimental determinations of electron-ion relaxation
rates are notoriously difficult. Two main approaches have
been taken: �i� the use of short, intense laser pulses to pro-
duce hot electrons and cool ions, or �ii� the use of shock
compression devices to heat the ions with corresponding
cool electrons. Early experiments by the Ng group �15,16�,
using the latter approach with a Si plasma suggested that the
electron temperature was much less than the ion temperature,
but the extraction of a relaxation rate proved inconclusive.

Riley et al. �17� measured absolute x-ray scattering cross
sections from dense Al plasmas created by strong laser-
driven shocks. The measured cross sections were in disagree-
ment with hydrodynamic simulations suggesting that the
Landau-Spitzer energy relaxation rate used in the simulations
may be inaccurate. These indirect experiments further under-
scored the importance of understanding the energy relaxation
rates between electrons and ions in dense plasmas. Efforts
are underway at Los Alamos National Laboratory to measure
the temperatures of both electrons and ions in a strongly
coupled plasma to obtain a direct measurement of the relax-
ation rate �18�, as well as at the OMEGA laser facility at the
University of Rochester and the National Ignition Facility at
Lawrence Livermore National Laboratory to measure
electron-ion coupling rates in hot, dense plasmas.

We present large-scale molecular dynamics �MD� simula-
tions of the electron-ion relaxation rate for conditions typical
of ICF. Due to a lack of experimental data for these condi-
tions, our only recourse is to perform MD simulations where
Newton’s equations of motion are integrated for ions and
electrons interacting through a well-defined potential to de-
scribe the interparticle forces. In addition, we have examined
the sensitivity of the relaxation process to various parameters
in the potential. Such a study provides a critical assessment
of certain “quantal” enhancements of the bare Coulomb in-
teraction. Previous MD simulations have been used to study
energy relaxation in strongly coupled systems �19–21�, but
typically only included a very limited number �102� of par-
ticles. We demonstrate the ability of classical MD simula-
tions to include on the order of 106 particles using contem-
porary high-performance computing. We complement these
“numerical experiments” with calculations using the
quantum-mechanical Fermi golden rule method of Dharma-
wardana and Perrot �6,7� and Hazak et al. �9�, which is ap-
propriate because we only consider weakly coupled systems.
In the following, we first describe our numerical methods
and results, before giving a detailed discussion of the com-
parison of the relaxation rate from MD simulations and from
quantal approaches.
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II. THEORETICAL METHODS

A. Molecular dynamics simulations

For hydrogen, the ionization energy is 13.595 eV �22�,
and the ionization limit is 1.0518�105 K. The plasma de-
generacy �=

kBT

EF
, where EF is the Fermi energy, is a guide to

whether the system exists in a classical or quantum state. If
��10, electrons exist in the fully nondegenerate region and
can be described by classical methods except for short-range
collisions �23�. These regions are illustrated on the phase
diagram shown in Fig. 1, which indicates selected test points
for which MD simulations were performed. These points lie
along the same degeneracy line. For completeness, we also
list, in Table I, the various plasma parameters for each point
indicated in Fig. 1, along with various constants of the
plasma. All the points considered lie well above the ioniza-

tion limit and are well within the region for which classical
MD simulations are appropriate.

For our MD simulations, we adopt a bare Coulomb po-
tential for the repulsive electron-electron and ion-ion inter-
actions while a Deutsch potential �24� is used for the attrac-
tive electron-ion interactions as

Vei =
qeqie

2

4��0

1

r
�1 − exp�−

r

rs
�� , �1�

where the characteristic distance rs is the thermal de Broglie
wavelength ��ei=h /	2�mkT, where T is the average tem-
perature T=0.5�Te+Ti�, and m is the electron mass�. To
simulate the given system efficiently, a parallel MD code has
been developed employing periodic boundary conditions. A
conventional velocity Verlet integrator propagates the equa-
tions of motion within the microcanonical and isokinetic en-
sembles. A particle mesh Ewald algorithm incorporates peri-
odic images of Coulomb interactions; particle interactions
are calculated for all pairs for small ensembles or by a cell-
sorting method for large ones. Pipe-lining or domain decom-
position is employed for the parallel direct sum and a parallel
fast-fourier transform �FFT� is used for the reciprocal sum.
The details of the implemented MD simulations can be found
in �25�.

To achieve full relaxation requires more than 109 time
steps. Simulations for only partial relaxation still require a
very large number of time steps ��107�. This computational
difficulty has necessitated the adoption of two approaches.
First, we employ samples of several thousand particles to
examine the early relaxation behavior of the electron-proton
plasma. For statistical reliability, it would be preferable to
employ samples of around a million particles, but the vast
number of time steps required makes this choice impractical.
Second, we employ an acceleration procedure, which entails
using a reduced ion mass of 0.01 amu instead of the real
proton mass of 1.0 amu. This reduced mass ratio accelerates
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FIG. 1. Phase diagram of a hydrogen plasma. Various values of
the degeneracy parameter � of the plasma are indicated. The fuel
core of NIF exists in the region within the ellipse. The MD simu-
lations were performed for points A–D as discussed in the text.

TABLE I. e-H plasma system configurations. The subscript e indicates an electron parameter while i
indicates an ion parameter. Other quantities listed include n for number density, T for initial temperature,
�Debye for Debye screening length ��Debye=	kT / 4�ne2�, a for Wigner-Seitz radius, 	 for the plasma coupling
constant, �ei for the thermal de Broglie wavelength ��ei=h /	2�mkT, T=0.5�Te+Ti��, and 
 for the plasma
frequency.

Symbol A B C D Unit

ne 2.4�1022 2.680�1023 7.590�1023 2.4�1025 cm−3

ni 2.4�1022 2.680�1023 7.590�1023 2.4�1025 cm−3

Te 80 400 800 8,000 eV

Ti 100 500 1,000 10,000 eV

�Debye�e 4.292 2.872 2.414 1.357 Å

�Debye�i 4.799 3.211 2.698 1.518 Å

ae, ai 2.151 9.622�10−1 6.801�10−1 2.151�10−1 Å

	e 8.369�10−2 3.741�10−2 2.647�10−2 8.369�10−3

	i 6.696�10−2 2.993�10−2 2.117�10−2 6.696�10−3

�ei 7.296�10−1 3.263�10−1 2.307�10−1 7.296�10−2 Å


e 8.740�1015 2.921�1016 4.915�1016 2.764�1017 Hz
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the relaxation by more than a factor of 10 and so allows us to
accommodate much larger systems �
106 particles� with
high statistical accuracy.

By analyzing the MD simulations, the physical properties
of the electron-proton plasma can be investigated. To find the
relaxation rate from the results of molecular dynamics, the
fitting scheme of �19,20� is used. Assuming exponential de-
cay of the electron temperature difference, we can fit the
transient change with a time constant �H as

dTe/dt 
 exp�− t/�h� , �2�

which relates to the relaxation rate g through

g =
3

2

dTe/dt

�T
kB =

3

4

kB

�H
. �3�

That is, g will be proportional to the inverse of the time
constant �H.

B. Landau-Spitzer

The Landau-Spitzer �LS� result �1–3� has the form

dEe

dt
= g�Ti − Te� , �4�

where Ee is the total electron energy, and where the relax-
ation rate g is

g =
3

2
ni

	2�e4 8Z2ne

3memiT
3/2 ln LS, �5�

and where

T =
Te

me
+

Ti

mi
. �6�

The relaxation rate contains the Coulomb logarithm, defined
as ln LS=�bmin

bmaxdk /k. In the above expression, ni is the num-
ber of ions �with charge Z� in the system with mass mi, ne is
the electron density with mass me, and Te �Ti� is the electron
�ion� temperature. In this work we have used as bmax the
electron Debye screening length ��Debye=	kT / 4�ne2�, and
as bmin the deBroglie wavelength �i.e., �ei=h /	2�mkT, T
=0.5�Te+Ti��. We choose this value of bmin in order to best
compare with our MD simulations, which were made with a
screened potential with rs=�ei. Other choices for bmin include
bmin=�ei /2� �20� and bmin
0.18�ei as derived from the ana-
lytical expression from dimensional continuation �12,13�.
Lee and More �5� have improved the LS expression by in-
corporating additional degeneracy effects.

C. Fermi golden rule approach

The Fermi golden rule gives the following expression for
the energy relaxation rate of a two-temperature plasma �6,7�:

dEe

dt
= �

0

� d


2�

� d3q

�2��3 Uie�q�2�NieA
eAi, �7�

where

�Nie = Ni�
/Ti� − Ne�
/Te� ,

Ae = − 2 Im��ee�q,
,Te�� ,

Ai = − 2 Im��ii�q,
,Ti�� , �8�

with �ee�q ,
 ,Te� and �ii�q ,
 ,Ti� referring to the dynamical
linear response function of the electron and ion subsystems,
respectively. The Bose factors are given by Na�
 /Ta�
= �exp�
 /Ta�−1�−1 �a= i or e�. In expressions �7� and �8�, q
is the momentum transfer between the electrons and ions,
and �
 is the energy transferred. Uie�q� is the electron-ion
interaction potential. In each equation atomic units have been
used, and therefore Eq. �7� refers to the energy relaxation
rate in one atomic unit of volume.

In general the ions are screened composite particles, and
therefore Uie�q� is an effective interaction or “pseudopoten-
tial” �6,7�. The electron-ion interaction potential used in Eq.
�7� can be derived from an average-atom treatment �26�.
However, for the case of a fully ionized plasma, a much
simpler Coulomb potential for the electron-ion interaction
potential pertains yielding considerable speedup in the com-
putation of the relaxation rates for a wide range of densities
and temperatures. We also employ an average-atom method
�26� to verify that the plasma is indeed fully ionized for a
given temperature and density. Once this has been confirmed,
a Coulomb potential may be used for Uie�q� in Eq. �7�. The
option of using a screened potential from average-atom
codes for partially ionized plasmas is also in place. The elec-
tron linear response functions �ee are obtained fully quantum
mechanically by using the random-phase approximation with
local field corrections �23,27,28�, whereas the ion linear re-
sponse functions �ii are obtained from a semiclassical ap-
proach �29�. Thus the electron-electron and ion-ion couplings
are treated to all orders while the electron-ion coupling is
treated to first order, which for the weakly coupled systems
�see Table I� under consideration here is appropriate.

As discussed by Hazak et al. �9�, this approach may be
further simplified in the cases where the spectrum of fluctua-
tions of the ions is small compared with the electron and ion
temperatures. In such a limit, the f-sum rule may be used to
compute the integral over 
 in Eq. �7� analytically. By lin-
earizing the Bose factors so that Na�Ta /
 the relaxation
rate g can be written as

g = 4� d3q

�2��3 Uei�q�2� Im��ee�q,
,Te��



�

=0

niq
2

4mi
. �9�

This expression is numerically more convenient to evaluate
than the original Fermi golden rule formula since it contains
only a single integral over smooth functions instead of a
double integral over sharply peaked functions �30�.

III. RESULTS

A. Results of MD simulations

We performed MD simulations with 1536 electrons and
1536 protons for more than 107 time steps using the full bare
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ion mass. We first thermalize the system by isothermal simu-
lations, using an isokinetic or stochastic thermostat, to
evolve the sample for more than 105 time steps from given
initial conditions. After this pretreatment, the electrons and
protons are relaxed without any thermostat toward a micro-
canonical ensemble. By momentum transfer, the electron
temperature increases while the ion temperature decreases.
The temperatures converge toward an intermediate �approxi-
mately average� temperature but, as previously discussed,
this process takes an impractical amount of computational
resources to reach the equilibrium state. Therefore we only
consider partial relaxation and use linear fitting to find a time
constant for the evolution of the temperature differences.

Temporal relaxation is shown in Fig. 2 for point A, which
shows an approximately linear temperature decay. From the
fitting curve, we calculate the time constant as an inverse of
the gradient. Points B and C are tested in the same way.
However, we failed to extract any physical values from point
D, which has extreme conditions of temperature and density.
The acquired statistics for D were not sufficient, even with
108 time steps. Consequently, point D was studied quantita-
tively using the reduced mass simulations only.

To improve the statistics, simulations including 1 000 000
particles are required. By faster momentum exchange, the
method of reduced ion mass decreases the required number
of time steps by one to two orders of magnitude. In a subse-
quent series of simulations, we tested two different en-
sembles of particles. As done in the full ion mass cases, 1536

pairs of electrons and ions are simulated with all pairwise
interactions �25�. In addition to these simulations, 5�105

pairs of electrons and ions were tested. This large particle set
provides much better statistics and serves as a reference.

Results for sampling point A described in Table I are
shown in Fig. 3. The curve on the left is the result from 1536
pairs whereas the curve on the right is for 5�105 pairs. Even
though the 1536 pair simulations display considerable noise,
as in the bare ion mass simulations, the fitted results show
good agreement with the 5�105 pair simulations. For the
5�105 pairs of electrons and ions, we find nearly linear
curves, implying sufficiently good statistics. Table II shows
the time constant and rms error of the time constant fit for
each MD simulation. We note that this is not the error in the
MD simulation itself. For the larger system, the rms error
clearly decreases. However, the time constant for point D is
much larger when simulating 5�105 pair particles, than for
the simulations using 1536 pairs. Even with the reduced ion
mass simulations, the required time steps were too many for
5�105 particle pairs, and we could test only less than 1 fs,
which may yield insufficient thermal mixing. Therefore we
used the results of 1536 particle pairs of point D when com-
paring to other calculations.

B. Comparison of MD simulations with other methods

The comparison of our MD simulations with other calcu-
lations are presented in Tables III and IV. Although it is
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FIG. 2. �Color online� Bare proton mass simulations. Tempera-
ture curves �left� and logarithmic curves �right� of the temperature
difference between the ions and electrons for test point A.
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FIG. 3. �Color online� Temperature differences �T�=Ti−Te�
from the reduced ion mass simulations, for sampling point A. The
left panel shows the temperature difference using 1536 /1536 par-
ticles, and the right panel shows the temperature difference when
5�105 /5�105 particles are used.

TABLE II. Rms error and time constant of each MD simulation using the reduced-mass ion simulations.
The number of electrons and ions employed is given within the parentheses. The unit of �H is fs.

Method A B C D

Rms error �1536� 1.354�10−1 1.768�10−1 5.973�10−2 2.473�10−2

Rms error �5�105� 2.499�10−3 4.027�10−3 1.681�10−3 3.356�10−4

�H �1536� 63.432 46.960 39.909 17.886

�H �5�105� 65.583 48.154 41.882 78.950
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possible to recast the results from our MD simulations in
terms of ln , we choose instead to compare the actual re-
laxation rate g, so that we can compare to quantal approaches
as described previously.

In Table III we compare the MD simulations made using
the bare ion mass, and 1536 /1536 electrons and ions, with
calculations using the modified Fermi golden rule method as
defined in Eq. �9�, with both an electron-ion potential derived
from an average-atom treatment �MFGRAA� �26� and a Cou-
lomb potential �MFGRC�. This latter calculation assumes
that the plasma is completely ionized. We also compare our
calculations with the analytic expression of Brown et al. �12�
�labeled BPS� and with the Landau-Spitzer formula of Eq.
�5�. The MD simulations produce relaxation rates in good
agreement with the other approaches. For example, the MD
rates are within 21% or better of the Landau-Spitzer rates.
The amount of disagreement is not due to the error �better
than 0.4% for 5�106 ions as shown in Table II� in the fitting
of the relaxation time constant. This agreement is compa-
rable to that obtained between MD simulations and the
Landau-Spitzer formula for plasmas with stronger coupling
�20� �	i=0.4–2.3 and 	e=0.2–0.9�, where the MD simula-
tions employed the Deutsch potential, Eq. �1�. The MFGRC
results, assuming a fully ionized plasma, are in very good
agreement with the results from the method of Brown et al.
�12�, who also made the assumption of a fully ionized
plasma. The MFGRAA rates are slower than the MFGR cal-
culations using a Coulomb potential, even though the
average-atom treatment found that the plasma is between
93% and 98% ionized, depending on the test point. This
highlights the extreme sensitivity of the relaxation rate to
the choice of electron-ion potential. We also compare the
Fermi golden rule calculations with the results from the
Landau-Spitzer approach, and find that the latter predicts
about a 40% lower relaxation rate compared to MFGRC and
BPS.

Conceivably the MD results in Table III show a smaller
relaxation rate than the MFGR and BPS calculations because
of the relatively low number of particles used. We test this
condition by comparing in Table IV similar simulations
made with the reduced ion mass. In this case we can contrast

the MD simulations of 1536 pairs of electrons and ions with
the results of 5�105 pairs. For test points A, B, and C, the
MD relaxation rate is insensitive to the number of particles,
whereas for point D, the 5�105 /5�105 simulation appears
questionable, as previously discussed.

For test points A, B, and C, the MD rates are significantly
slower than the Landau-Spitzer �LS� rates. For the ratios of
mi /me considered in the present work �mi /me=1837 for the
bare mass calculations and mi /me=18.37 for the reduced
mass calculations�, the Landau-Spitzer formula, Eq. �5�, for
the ratio of the relaxation rate g�m2� /g�m1� to first order
scales linearly as the inverse mass ratio m1 /m2 of the ion
masses m1 and m2. The deviation from first order for
g�reduced,LS� /g�bare,LS� is about 10%, as deduced from
the results in Tables III and IV. Previous MD simulations of
temperature relaxation in two-component plasmas with 	i

2, found �21� that g�m2� /g�m1� scaled as �m1 /m2�0.86, and
not �m1 /m2�1, for a range of mass ratios from 10 to 1000. If
we assume this scaling for the present MD simulations then
g�reduced,MD� /g�bare,MD�=1000.86=52. Assuming in the
limit of large mi /me that g�bare,MD�=g�bare,LS� and using
g�reduced,LS� /g�bare,LS�=90 �Tables III and IV�, this
yields a predicted MD rate, g�reduced,MD� of 1.73
�=90 /52� times slower than g�reduced,LS�. This predicted
slower MD rate is comparable to the actual slower MD rates
in Tables III and IV �which are about 1.8–2.5 times slower
relative to LS�.

We note that, as in Table III, the MFGRC calculations are
in very good agreement with the BPS calculations of �12�
and that the Landau-Spitzer approach provides around a 40%
lower relaxation rate compared to the MFGRC and BPS
rates. In comparing Tables III and IV, we find that the
MFGRC, BPS, and Landau-Spitzer rates scale to first order
with the inverse of the ion mass �i.e., the rates in Table IV
are about 100 times larger than the rates in Table III�, as
expected from inspection of Eqs. �5� and �9�.

It should also be emphasized that previous studies �10�
have shown the extreme sensitivity of the relaxation rate to
the choice of bmin in the expression for ln  in Eq. �5�. For
example, if one uses a bmin value of �ei /2�, the Landau-

TABLE III. Relaxation rate g �W /K m3� for test points defined
in Fig. 1 using the bare ion mass simulations. The MD simulations
employed 1536 electrons and 1536 ions. MFGRAA refers to the
modified Fermi golden rule calculations made using Eq. �9�, and
using an electron-ion potential derived from an average-atom treat-
ment �26�. MFGRC refers to the same calculations but using a
Coulomb potential. BPS refers to the calculations of �12�. The num-
bers in the first row indicate the factor by which each column
should be multiplied.

A�1017 B�1018 C�1018 D�1020

MD 1.03 0.98 4.06

MFGRAA 0.88 1.40 4.62 1.74

MFGRC 1.57 1.91 5.81 2.13

BPS �12� 1.53 1.94 5.79 2.14

Landau-Spitzer 0.90 1.24 3.81 1.51

TABLE IV. Relaxation rate g �W /K m3� for test points defined
in Fig. 1 using reduced ion mass simulations. The MD simulations
employed the number of electrons and ions given within the paren-
theses. MFGRAA refers to the modified Fermi golden rule calcula-
tions made using Eq. �9�, and using an electron-ion potential de-
rived from an average-atom treatment �26�. MFGRC refers to the
same calculations but using a Coulomb potential. BPS refers to the
calculations of �12�. The numbers in the first row indicate the factor
by which each column should be multiplied.

A�1019 B�1020 C�1020 D�1022

MD �1536� 0.39 0.54 1.97 1.39

MD �5�105� 0.38 0.58 1.88 0.32

MFGRAA 0.84 1.42 4.71 1.92

MFGRC 1.57 1.91 5.81 2.13

BPS �12� 1.53 1.94 5.79 2.14

Landau-Spitzer 0.82 1.13 3.45 1.37
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Spitzer relaxation rate can increase by almost a factor of 2. A
further discussion of this sensitivity can be found in Ref.
�10�. This sensitivity does not arise in the MFGRC ap-
proaches, where the de Broglie wavelength or ln  does not
appear explicitly. Although it has been shown that �9,14�, in
the high temperature limit, the MFGRC approach can be
reduced to an expression analogous to the Landau-Spitzer
expression Eq. �5� �i.e., with a ln  term�, this reworking
does not offer any guidance as to what bmin should be in this
case.

C. The effect of the Deutsch parameter

In order to shed some light on the differences between the
classical MD simulations and the results of the quantal ap-
proaches �MFGRC and �12��, we studied the effect of the
Coulomb screening in the MD simulations, which is through
the Deutsch potential �Eq. �1��. The parameter rs, which is
set equal to the thermal de Broglie wavelength ��ei� in all
MD simulations presented so far, determines the rate of the
electron-ion collisions. To study the effect of rs on the relax-
ation rate, several tests have been done in which we ran one
final series of MD simulations for test point A. The reduced
ion mass, 50 000 ions and 50 000 electrons, and several rs
values �0.1, 0.2, 0.5, 1.0, and 2.0��ei� were employed. The
temporal relaxation curves are presented in Fig. 4. A smaller
rs expedites the momentum transfer between electrons and
ions and the thermal mixing is faster. The relaxation rate �g�
has been calculated for each value of rs, and the results
shown in Fig. 5. For rs=2�ei, the difference in the relaxation
rate is negligible compared with rs=�ei. However, a smaller
Deutsch parameter accelerates relaxation, and we find a
higher relaxation rate, especially for low values of rs. The
results of this study emphasizes the sensitivity of the relax-
ation rate relative to the choice of electron-ion potential
used. This dependence of g on rs can be understood in terms
of the momentum-transfer cross section �t, which is propor-

tional to the relaxation rate g �31�. The ratio of �t�rs�, com-
puted from the screened potential Eq. �1�, over �t�rs=0�,
computed from the bare Coulomb potential, decreases mono-
tonically from unity at rs=0 as a function of rs �32� in a
similar fashion to the relaxation rate in Fig. 5. Therefore
extrapolation of g to rs=0 is the relaxation rate for the Cou-
lomb potential from a purely classical MD simulation �a re-
sult independent of �.� The Landau-Spitzer expression, Eq.
�5�, is derived from �t�rs=0�. Using the ratio of g�rs� /g�rs
=�ei� obtained from Fig. 5, an effective value of rs can be
deduced that reproduces the quantal relaxation rate from
�12�. For point A in Table I, g�BPS� /g�MD ,rs=�ei�=1.49.
This ratio corresponds to the value of g at rs=0.28�ei in Fig.
5. Interestingly, this semiclassical value for rs is approxi-
mately equal to the value for bmin=0.18�ei as derived from
the analytical expression for g �12�. However, the situation is
complicated by the distinction which should be made be-
tween screening of the nucleus from the electrons as imple-
mented through the choice of rs, and by plasma screening of
the ions by the electronic charge cloud. The latter is auto-
matically included in the MD simulations, but is not, in gen-
eral, included in the MFGR calculations.

IV. CONCLUDING REMARKS

Using classical molecular dynamics, we have calculated
the relaxation rate g for several points along a degeneracy
line equivalent to the plasma conditions expected to be found
at NIF �National Ignition Facility�. We find that the MD
simulations are in reasonable agreement with the rates from
the Landau-Spitzer approach for bmin=�ei and are around
30% higher than calculations made using quantal Fermi
golden rule approaches. We find that the relaxation rates are
sensitive to the screening parameter used in the MD simula-
tions. By inverting the classical MD relaxation rate, that em-
ployed the screened potential, against the quantal BPS �12�
rate, a semiclassical value for the screening length rs
=0.28�ei is suggested.
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Finally, we note that the relaxation rates for fully ionized
dense hydrogen plasmas computed from the Fermi golden
rule approach, and from the analytic expression of Brown et
al. �12�, are around 40% higher than the Landau-Spitzer for-
mula �using bmin=�ei� which is commonly used in fusion
modeling. It would be of interest to study how these different
relaxation rates impact on the modeling of the yield from
inertial confinement fusion devices such as NIF. For partially
ionized plasmas, or plasmas containing mixtures of ions, the
relaxation rates are much more difficult to compute. Work on
these problems is underway.
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